學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 在大白鼠的脊髓層次上由催產素以及血管收縮素IV所個別誘導的抗疼痛敏化之間可能的關聯性
A possible correlation between the oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats
作者 張恩沛
貢獻者 陳景宗<br>黃翊恭
張恩沛
關鍵詞 催產素
血管收縮素IV
抗疼痛敏化
oxytocin
angiotensin IV
anti-hyperalgesia
日期 2009
上傳時間 3-Sep-2013 14:05:25 (UTC+8)
摘要 在本實驗室之前的研究中顯示在發炎狀態的大白鼠上以intrathecal (i.t.) 方式給予angiotensin IV (Ang IV) ,Ang IV 是insulin-regulated aminopeptidase (IRAP) inhibitor,可以減少腳掌發炎之大白鼠的疼痛過敏化。然而,這個由Ang IV所產生之效果背後的機制還未被完全釐清。
在這次的實驗中,我們利用由carrageenan引起腳掌腫脹之大鼠進行plantar test來研究Ang IV所產生之抗疼痛過敏化其中可能機制。由於有文獻指出,在發炎狀態的大白鼠上以intrathecal (i.t.) 方式給予oxytocin可產生一劑量相關性的抗疼痛過敏化作用,因此我們推測在大白鼠的脊髓層次上由oxytocin以及Ang IV所個別誘導的抗疼痛過敏化之間可能有關聯性。利用 i.t.單獨給予atosiban (selective oxytocin receptor antagonist) 可以觀察到一個較強烈的疼痛過敏化現象,然而合併給予atosiban,可使Ang IV所產生的抗疼痛過敏化完全被阻斷掉。因此我們推測oxytocin在以intrathecal (i.t.) 方式給予Ang IV而阻斷IRAP的活性,進而產生抗疼痛過敏化作用的過程中是一個主要的IRAP受質。
當我們在carrageenan誘導疼痛過敏化的大白鼠上單獨給予低劑量之oxytocin並沒有產生統計上顯著之抗疼痛過敏作用。然而合併給予oxytocin和Ang IV後,則可以有觀察到Ang IV 能增加並且延長oxytocin所引起的抗疼痛過敏化作用。
就內生性oxytocin來看,電刺激paraventricular hypothalamic nucleus (PVN)已被證實可以增加內生性的oxytocin分泌到脊髓。而這樣的一個神經路徑被發現和疼痛的調節具有很密切的關聯性。從我們的結果中,我們發現在carrageenan誘導疼痛過敏化的大白鼠上,i.t.給予Ang IV可以延長PVN電刺激產生的抗疼痛過敏化作用,由此推測 Ang IV可能可以保護內生性oxytocin不被分解或失去活性。
除了oxytocin之外,IRAP在體外的實驗中被證實可以分解數種具生理活性之peptides 的N-terminal amino acid,其中包括vasopressin, bradykinin 以及 enkephalin等。在這些物質中,bradykinin已被證實在週邊發炎的過程中具有重要的調控效果,若IRAP在週邊組織扮演了一個分解促發炎物質的角色,利用Ang IV也許可以去阻斷IRAP之活性進而增加這些促發炎物質。因此,我們在由carrageenan誘導疼痛過敏化的動物模式上利用腳掌局部注射 Ang IV來探討在發炎部位Ang IV可能的作用。我們猜測Ang IV 可能可以調控不同物質(例如:bradykinin)而在發炎部位產生局部之作用, 但結果顯示在疼痛過敏化以及腫脹程度上,Ang IV並不具有調控週邊組織發炎過程的能力。所以推測Ang IV在週邊發炎位置可能並沒有扮演非常重要的角色。
總而言之,本實驗結果證實了Ang IV以及 oxytocin在發炎大白鼠的脊髓層次上所個別引起之抗疼痛過敏化作用之間具有相關性,其中的機制可能是Ang IV在發炎大白鼠的脊髓層次上藉由抑制IRAP降解oxytocin的活性,進而產生抗疼痛過敏化的效果。
In our previous study, we showed that intrathecal (i.t.) administration of angiotensin IV (Ang IV), an insulin-regulated aminopeptidase (IRAP) inhibitor, could attenuate hyperalgesia in rats with inflammation. However, the underlying mechanism(s) for this effect of Ang IV was not clarified yet. Using the plantar test in rats with carrageenan-induced paw inflammation, we attempted to investigate the possible mechanism(s) of Ang IV in the present study. Because it has been reported that i.t. administration of oxytocin produced a dose-dependent anti-hyperalgesia effect in rats with inflammation, we speculate that there is a possible correlation between the oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats. Using i.t. co-administered atosiban (a selective oxytocin receptor antagonist), the anti-hyperalgesia effect of Ang IV was completely abolished, although a severer hyperalgesia was observed in rats receiving atosiban alone. This indicates that oxytocin could be the major substrate of IRAP responsible for the anti-hyperalgesia caused by intrathecal administration of Ang IV, which blocked the activity of IRAP. Using i.t. administration of oxytocin in rats with carrageenan-induced hyperalgesia, the anti-hyperalgesia effect of oxytocin was potent and significant. When Ang IV was co-administered with the low dose of oxytocin, a significant enhancing effect of Ang IV on anti-hyperalgesia of oxytocin was observed. In view of the endogenous oxytocin, electrical stimulation of the paraventricular hypothalamic nucleus (PVN) has been proved to cause the increase of oxytocin release at the spinal cord. This neural pathway has been found to be highly related to the modulation of pain. In our results, we found that i.t. administration of Ang IV could prolong the anti-hyperalgesia induced by PVN stimulation. This suggests a possible protective effect of Ang IV on endogenous oxytocin degradation/dysfunctioning. In addition to oxytocin, it was well known that IRAP is able to cleave the N-terminal amino acid from several bioactive peptides in vitro, including vasopressin, bradykinin and enkephalin. Among these substrates, bradykinin has been demonstrated to be an important mediator in peripheral inflammation. It is a pro-inflammatory substance that can be enhanced by Ang IV, if the peripheral IRAP plays a role in its degradation. Therefore, we examined the possible local effect of intraplantarly injected Ang IV on the carrageenan-induced hyperalgesia in the same model. However, our results showed no effect of local Ang IV on hyperalgesia and paw edema, indicating that Ang IV may not be able to regulate the peripheral inflammatory process. Overall, the present study verified the possible interaction between the oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats with inflammation. It suggests that Ang IV may act though the inhibition of the activity of IRAP to reduce the degradation of oxytocin, thereby lead to anti-hyperalgesia in rats with inflammation.
參考文獻 Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FAO, Simpson RJ, Connolly LM, Chai SY (2001) Evidence That the Angiotensin IV (AT4) Receptor Is the Enzyme Insulin-regulated Aminopeptidase. J Biol Chem 276:48623-48626.
Ardaillou R, Chansel D (1997) Synthesis and effects of active fragments of angiotensin II. Kidney Int 52:1458-1468.
Bernier SG, Bellemare JML, Escher E, Guillemette G (1998) Characterization of AT4 Receptor from Bovine Aortic Endothelium with Photosensitive Analogues of Angiotensin IV†. Biochemistry 37:4280-4287.
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915-925.
Braszko JJ, Kulakowska A, Karwowska-Polecka W (1998) CGP 42112A ANTAGONISM OF THE ANGIOTENSIN II AND ANGIOTENSIN II(3-7) FACILITATION OF RECALL IN RATS. Pharmacological Research 38:461-468.
Bridges D, Thompson SWN, Rice ASC (2001) Mechanisms of neuropathic pain. Br J Anaesth 87:12-26.
Cechetto DF, Saper CB (1988) Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol 272:579-604.
Chuang H-h, Prescott ED, Kong H, Shields S, Jordt S-E, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957-962.
Condés-Lara M, Martínez-Lorenzana G, Rojas-Piloni G, Rodríguez-Jiménez J (2007) Branched oxytocinergic innervations from the paraventricular hypothalamic nuclei to superficial layers in the spinal cord. Brain Research 1160:20-29.
Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, López Hidalgo M, Freund-Mercier MJ (2006) Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Research 1081:126-137.
Cook AJ, Woolf CJ, Wall PD, McMahon SB (1987) Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 325:151-153.
Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15-27.
Fernando RN, Larm J, Albiston AL, Chai SY (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. The Journal of Comparative Neurology 487:372-390.
Fernando RN, Luff SE, Albiston AL, Chai SY (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. Journal of Neurochemistry 102:967-976.
Fletcher DM, Kayser VD, Guilbaud GM, DSc (1996) Influence of Timing of Administration on the Analgesic Effect of Bupivacaine Infiltration in Carrageenin-injected Rats. Anesthesiology 84:1129-1137.
Gold MS, Levine JD, Correa AM (1998) Modulation of TTX-R INa by PKC and PKA and Their Role in PGE2-Induced Sensitization of Rat Sensory Neurons In Vitro. J Neurosci 18:10345-10355.
Hallbeck M, Larhammar D, Blomqvist A (2001) Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J Comp Neurol 433:222-238.
Handa RK, Krebs LT, Harding JW, Handa SE (1998) Angiotensin IV AT4-receptor system in the rat kidney. Am J Physiol Renal Physiol 274:F290-299.
Harding JW, Wright JW, Swanson GN, Hanesworth JM, Krebs LT (1994) AT4 receptors: specificity and distribution. Kidney Int 46:1510-1512.
Hartmann B, Ahmadi S, Heppenstall PA, Lewin GR, Schott C, Borchardt T, Seeburg PH, Zeilhofer HU, Sprengel R, Kuner R (2004) The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain. Neuron 44:637-650.
Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR (1997) Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol Endocrinol Metab 272:E600-606.
Holmes C, Landry D, Granton J (2003) Science Review: Vasopressin and the cardiovascular system part 1 - receptor physiology. Critical Care 7:427 - 434.
Horio J, Nomura S, Okada M, Katsumata Y, Nakanishi Y, Kumano Y, Takami S, Kinoshita M, Tsujimoto M, Nakazato H, Mizutani S (1999) Structural Organization of the 5`-End and Chromosomal Assignment of Human Placental Leucine Aminopeptidase/Insulin-Regulated Membrane Aminopeptidase Gene. Biochemical and Biophysical Research Communications 262:269-274.
Hwang S-B, Lam M-H, Li C-L, Shen T-Y (1986) Release of platelet activating factor and its involvement in the first phase of carrageenin-induced rat foot edema. European Journal of Pharmacology 120:33-41.
Ji R-R, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in Neurosciences 26:696-705.
Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Critical reviews in oncology/hematology 53:35-69.
Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-210.
Keller SR (2004) Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull 27:761-764.
Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE (1995) Cloning and Characterization of a Novel Insulin-regulated Membrane Aminopeptidase from Glut4 Vesicles. J Biol Chem 270:23612-23618.
Krishnan R, Hanesworth JM, Wright JW, Harding JW (1999) Structure-binding studies of the adrenal AT4 receptor: analysis of position two- and three-modified angiotensin IV analogs. Peptides 20:915-920.
Lanckmans K, Sarre S, Smolders I, Michotte Y (2007) Use of a structural analogue versus a stable isotope labeled internal standard for the quantification of angiotensin IV in rat brain dialysates using nano-liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 21:1187-1195.
Laustsen PG, Rasmussen TE, Petersen K, Pedraza-Diaz S, Moestrup SK, Gliemann J, Sottrup-Jensen L, Kristensen T (1997) The complete amino acid sequence of human placental oxytocinase. Biochim Biophys Acta 1352:1-7.
Lee J, Albiston AL, Allen AM, Mendelsohn FAO, Ping SE, Barrett GL, Murphy M, Morris MJ, McDowall SG, Chai SY (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience 124:341-349.
Lew RA, Mustafa T, Ye S, McDowall SG, Chai SY, Albiston AL (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). Journal of Neurochemistry 86:344-350.
Lewin GR, Lu Y, Park TJ (2005) A plethora of painful molecules. Current Opinion in Neurobiology 15:129-129.
Lo TN, Saul WF, Lau SS (1987) Carrageenan-stimulated release of arachidonic acid and of lactate dehydrogenase from rat pleural cells. Biochemical Pharmacology 36:2405-2413.
Lundeberg T, Meister B, Björkstrand E, Uvnäs-Moberg K (1993) Oxytocin modulates the effects of galanin in carrageenan-induced hyperalgesia in rats. Brain Research 608:181-185.
Lundeberg T, Uvnäs-Moberg K, Ågren G, Bruzelius G (1994) Anti-nociceptive effects of oxytocin in rats and mice. Neuroscience Letters 170:153-157.
Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M (2001) Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. European Journal of Biochemistry 268:3259-3266.
Miller-Wing A, Hanesworth J, Sardinia M, Hall K, Wright J, Speth R, Grove K, Harding J (1993) Central angiotensin IV binding sites: distribution and specificity in guinea pig brain. J Pharmacol Exp Ther 266:1718-1726.
Miranda-Cardenas Y, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, López-Hidalgo M, Freund-Mercier MJ, Condés-Lara M (2006a) Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122:182-189.
Miranda-Cardenas Y, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jimenez J, Lopez-Hidalgo M, Freund-Mercier MJ, Condes-Lara M (2006b) Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122:182-189.
Moeller I, Chai SY, Oldfield BJ, McKinley MJ, Casley D, Mendelsohn FAO (1995) Localization of angiotensin IV binding sites to motor and sensory neurons in the sheep spinal cord and hindbrain. Brain Research 701:301-306.
Mustafa T, Joo Hyung Lee, Siew Yeen Chai, Albiston AL, McDowall SG, Mendelsohn FA (2001) Bioactive angiotensin peptides: focus on angiotensin IV. Journal of Renin-Angiotensin-Aldosterone System 2:205-210.
Nomura M, Tsukahara S, Ando H, Katsumata Y, Okada M, Itakura A, Nomura S, Kikkawa F, Nagasaka T, Mizutani S (2002) Differential Distribution of Placental Leucine Aminopeptidase/Oxytocinase and Aminopeptidase A in Human Trophoblasts of Normal Placenta and Complete Hydatidiform Mole. Placenta 23:631-639.
Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates / George Paxinos, Charles Watson. Amsterdam:: Elsevier.
Pederson ES, Harding JW, Wright JW (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regulatory Peptides 74:97-103.
Petersson M, Alster P, Lundeberg T, Uvnäs-Moberg K (1996) Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neuroscience Letters 212:87-90.
Petersson M, Wiberg U, Lundeberg T, Uvnäs-Moberg K (2001) Oxytocin decreases carrageenan induced inflammation in rats. Peptides 22:1479-1484.
Reeta K, Mediratta PK, Rathi N, Jain H, Chugh C, Sharma KK (2006) Role of kappa- and delta-opioid receptors in the antinociceptive effect of oxytocin in formalin-induced pain response in mice. Regul Pept 135:85-90.
Robertson JM, Harding S, Grupp LA (1993) Bradykinin suppresses alcohol intake and plays a role in the suppression produced by an ACE inhibitor. Pharmacol Biochem Behav 46:751-758.
Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y (1996) Human Placental Leucine Aminopeptidase/Oxytocinase. J Biol Chem 271:56-61.
Santos RAS, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1-7): an update. Regulatory Peptides 91:45-62.
Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Research 117:305-312.
Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260-272.
Simone DA, Sorkin LS, Oh U, Chung JM, Owens C, LaMotte RH, Willis WD (1991) Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol 66:228-246.
Sofroniew MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28:475-478.
Stragier B, De Bundel D, Sarre S, Smolders I, Vauquelin G, Dupont A, Michotte Y, Vanderheyden P (2008) Involvement of insulin-regulated aminopeptidase in the effects of the renin–angiotensin fragment angiotensin IV: a review. Heart Failure Reviews 13:321-337.
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A Human Homolog of Angiotensin-converting Enzyme. CLONING AND FUNCTIONAL EXPRESSION AS A CAPTOPRIL-INSENSITIVE CARBOXYPEPTIDASE. J Biol Chem 275:33238-33243.
Torebjörk HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. The Journal of Physiology 448:765-780.
Vanderheyden PML (2009) From angiotensin IV binding site to AT4 receptor. Molecular and Cellular Endocrinology 302:159-166.
Wallis MG, Lankford MF, Keller SR (2007) Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293:E1092-1102.
Wang JW, Lundeberg T, Yu LC (2003) Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of mu-opioid receptor. Regul Pept 115:153-159.
Woolf CJ, Salter MW (2000) Neuronal Plasticity: Increasing the Gain in Pain. Science 288:1765-1768.
Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regulatory Peptides 59:269-295.
Wright JW, Harding JW (1997) Important roles for angiotensin III and IV in the brain renin-angiotensin system. Brain Research Reviews 25:96-124.
Wright JW, Yamamoto BJ, Harding JW (2008) Angiotensin receptor subtype mediated physiologies and behaviors: New discoveries and clinical targets. Progress in Neurobiology 84:157-181.
Wright JW, Krebs LT, Stobb JW, Harding JW (1995) The Angiotensin IV System: Functional Implications. Frontiers in Neuroendocrinology 16:23-52.
Yamahara N, Nomura S, Suzuki T, Itakura A, Ito M, Okamoto T, Tsujimoto M, Nakazato H, Mizutani S (2000) Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sciences 66:1401-1410.
Yirmiya R, Ben-Eliyahu S, Shavit Y, Marek P, Liebeskind JC (1990) Stimulation of the hypothalamic paraventricular nucleus produces analgesia not mediated by vasopressin or endogenous opioids. Brain Research 537:169-174.
Yu S-Q, Lundeberg T, Yu L-C (2003) Involvement of oxytocin in spinal antinociception in rats with inflammation. Brain Research 983:13-22.
Zhang J-H, Stobb JW, Hanesworth JM, Sardinia MF, Harding JW (1998) Characterization and Purification of the Bovine Adrenal Angiotensin IV Receptor (AT4) Using [125I]Benzoylphenylalanine-Angiotensin IV as a Specific Photolabel. J Pharmacol Exp Ther 287:416-424.
Zhang J-H, Hanesworth JM, Sardinia MF, Alt JA, Wright JW, Harding JW (1999) Structural Analysis of Angiotensin IV Receptor (AT4) from Selected Bovine Tissues. J Pharmacol Exp Ther 289:1075-1083.
Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proceedings of the National Academy of Sciences of the United States of America 93:11968-11973.
描述 碩士
國立政治大學
生命科學研究所
96754010
98
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096754010
資料類型 thesis
dc.contributor.advisor 陳景宗<br>黃翊恭zh_TW
dc.contributor.author (Authors) 張恩沛zh_TW
dc.creator (作者) 張恩沛zh_TW
dc.date (日期) 2009en_US
dc.date.accessioned 3-Sep-2013 14:05:25 (UTC+8)-
dc.date.available 3-Sep-2013 14:05:25 (UTC+8)-
dc.date.issued (上傳時間) 3-Sep-2013 14:05:25 (UTC+8)-
dc.identifier (Other Identifiers) G0096754010en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/59760-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 生命科學研究所zh_TW
dc.description (描述) 96754010zh_TW
dc.description (描述) 98zh_TW
dc.description.abstract (摘要) 在本實驗室之前的研究中顯示在發炎狀態的大白鼠上以intrathecal (i.t.) 方式給予angiotensin IV (Ang IV) ,Ang IV 是insulin-regulated aminopeptidase (IRAP) inhibitor,可以減少腳掌發炎之大白鼠的疼痛過敏化。然而,這個由Ang IV所產生之效果背後的機制還未被完全釐清。
在這次的實驗中,我們利用由carrageenan引起腳掌腫脹之大鼠進行plantar test來研究Ang IV所產生之抗疼痛過敏化其中可能機制。由於有文獻指出,在發炎狀態的大白鼠上以intrathecal (i.t.) 方式給予oxytocin可產生一劑量相關性的抗疼痛過敏化作用,因此我們推測在大白鼠的脊髓層次上由oxytocin以及Ang IV所個別誘導的抗疼痛過敏化之間可能有關聯性。利用 i.t.單獨給予atosiban (selective oxytocin receptor antagonist) 可以觀察到一個較強烈的疼痛過敏化現象,然而合併給予atosiban,可使Ang IV所產生的抗疼痛過敏化完全被阻斷掉。因此我們推測oxytocin在以intrathecal (i.t.) 方式給予Ang IV而阻斷IRAP的活性,進而產生抗疼痛過敏化作用的過程中是一個主要的IRAP受質。
當我們在carrageenan誘導疼痛過敏化的大白鼠上單獨給予低劑量之oxytocin並沒有產生統計上顯著之抗疼痛過敏作用。然而合併給予oxytocin和Ang IV後,則可以有觀察到Ang IV 能增加並且延長oxytocin所引起的抗疼痛過敏化作用。
就內生性oxytocin來看,電刺激paraventricular hypothalamic nucleus (PVN)已被證實可以增加內生性的oxytocin分泌到脊髓。而這樣的一個神經路徑被發現和疼痛的調節具有很密切的關聯性。從我們的結果中,我們發現在carrageenan誘導疼痛過敏化的大白鼠上,i.t.給予Ang IV可以延長PVN電刺激產生的抗疼痛過敏化作用,由此推測 Ang IV可能可以保護內生性oxytocin不被分解或失去活性。
除了oxytocin之外,IRAP在體外的實驗中被證實可以分解數種具生理活性之peptides 的N-terminal amino acid,其中包括vasopressin, bradykinin 以及 enkephalin等。在這些物質中,bradykinin已被證實在週邊發炎的過程中具有重要的調控效果,若IRAP在週邊組織扮演了一個分解促發炎物質的角色,利用Ang IV也許可以去阻斷IRAP之活性進而增加這些促發炎物質。因此,我們在由carrageenan誘導疼痛過敏化的動物模式上利用腳掌局部注射 Ang IV來探討在發炎部位Ang IV可能的作用。我們猜測Ang IV 可能可以調控不同物質(例如:bradykinin)而在發炎部位產生局部之作用, 但結果顯示在疼痛過敏化以及腫脹程度上,Ang IV並不具有調控週邊組織發炎過程的能力。所以推測Ang IV在週邊發炎位置可能並沒有扮演非常重要的角色。
總而言之,本實驗結果證實了Ang IV以及 oxytocin在發炎大白鼠的脊髓層次上所個別引起之抗疼痛過敏化作用之間具有相關性,其中的機制可能是Ang IV在發炎大白鼠的脊髓層次上藉由抑制IRAP降解oxytocin的活性,進而產生抗疼痛過敏化的效果。
zh_TW
dc.description.abstract (摘要) In our previous study, we showed that intrathecal (i.t.) administration of angiotensin IV (Ang IV), an insulin-regulated aminopeptidase (IRAP) inhibitor, could attenuate hyperalgesia in rats with inflammation. However, the underlying mechanism(s) for this effect of Ang IV was not clarified yet. Using the plantar test in rats with carrageenan-induced paw inflammation, we attempted to investigate the possible mechanism(s) of Ang IV in the present study. Because it has been reported that i.t. administration of oxytocin produced a dose-dependent anti-hyperalgesia effect in rats with inflammation, we speculate that there is a possible correlation between the oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats. Using i.t. co-administered atosiban (a selective oxytocin receptor antagonist), the anti-hyperalgesia effect of Ang IV was completely abolished, although a severer hyperalgesia was observed in rats receiving atosiban alone. This indicates that oxytocin could be the major substrate of IRAP responsible for the anti-hyperalgesia caused by intrathecal administration of Ang IV, which blocked the activity of IRAP. Using i.t. administration of oxytocin in rats with carrageenan-induced hyperalgesia, the anti-hyperalgesia effect of oxytocin was potent and significant. When Ang IV was co-administered with the low dose of oxytocin, a significant enhancing effect of Ang IV on anti-hyperalgesia of oxytocin was observed. In view of the endogenous oxytocin, electrical stimulation of the paraventricular hypothalamic nucleus (PVN) has been proved to cause the increase of oxytocin release at the spinal cord. This neural pathway has been found to be highly related to the modulation of pain. In our results, we found that i.t. administration of Ang IV could prolong the anti-hyperalgesia induced by PVN stimulation. This suggests a possible protective effect of Ang IV on endogenous oxytocin degradation/dysfunctioning. In addition to oxytocin, it was well known that IRAP is able to cleave the N-terminal amino acid from several bioactive peptides in vitro, including vasopressin, bradykinin and enkephalin. Among these substrates, bradykinin has been demonstrated to be an important mediator in peripheral inflammation. It is a pro-inflammatory substance that can be enhanced by Ang IV, if the peripheral IRAP plays a role in its degradation. Therefore, we examined the possible local effect of intraplantarly injected Ang IV on the carrageenan-induced hyperalgesia in the same model. However, our results showed no effect of local Ang IV on hyperalgesia and paw edema, indicating that Ang IV may not be able to regulate the peripheral inflammatory process. Overall, the present study verified the possible interaction between the oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats with inflammation. It suggests that Ang IV may act though the inhibition of the activity of IRAP to reduce the degradation of oxytocin, thereby lead to anti-hyperalgesia in rats with inflammation.en_US
dc.description.tableofcontents 目錄 ……………………………………………………………………………………………… VII


表目錄 …………………………………………………………………………………………… X


圖目錄 …………………………………………………………………………………………… XI


縮寫表 …………………………………………………………………………………………… XIV


緒論
一、脊髓神經系統之簡述 ……………………………………………………………………… 01
二、疼痛的神經生理學 ………………………………………………………………………… 04
三、血管收縮素IV (angiotensin IV) 的相關研究發展 …………………………………… 10
四、Insulin-regulated aminopeptidase的相關研究發展 ………………………………… 14
五、催產素之抗疼痛過敏化的相關研究發展 ………………………………………………… 19


目的 ……………………………………………………………………………………………… 23


材料與方法
一、實驗動物 …………………………………………………………………………………… 24
二、脊髓內注射之埋管手術 …………………………………………………………………… 24
三、下視丘室旁核電刺激 ……………………………………………………………………… 27
四、動物行為實驗 ……………………………………………………………………………… 30
五、各組實驗組別與流程 ……………………………………………………………………… 33
六、其他設備 …………………………………………………………………………………… 41
七、數據統計方法 ……………………………………………………………………………… 41


結果
一、實驗一之實驗結果 ………………………………………………………………………… 42
二、實驗二之實驗結果 ………………………………………………………………………… 45
三、實驗三之實驗結果 ………………………………………………………………………… 49
四、實驗四之實驗結果 ………………………………………………………………………… 52


討論
一、Ang IV能在spinal cord產生抗疼痛過敏化之作用……………………………………… 54
二、 Ang IV在spinal cord所誘導產生之抗疼痛過敏化作與活化oxytocin receptor有關 63
三、外源性oxytocin所產生之止痛作用可被Ang IV增強或延長 …………………………… 67
四、內生性之oxytocin在閃尾試驗上可能無法產生止痛效果 ……………………………… 71
五、在腳底板疼痛實驗中,內生性之oxytocin所產生之抗疼痛過敏化作用可被Ang IV延長 73
六、在週邊組織中Ang IV可能並不具調控腳掌發炎腫脹與止痛之功能 …………………… 76


結論 ……………………………………………………………………………………………… 78


參考文獻 ………………………………………………………………………………………… 79
zh_TW
dc.format.extent 1853441 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096754010en_US
dc.subject (關鍵詞) 催產素zh_TW
dc.subject (關鍵詞) 血管收縮素IVzh_TW
dc.subject (關鍵詞) 抗疼痛敏化zh_TW
dc.subject (關鍵詞) oxytocinen_US
dc.subject (關鍵詞) angiotensin IVen_US
dc.subject (關鍵詞) anti-hyperalgesiaen_US
dc.title (題名) 在大白鼠的脊髓層次上由催產素以及血管收縮素IV所個別誘導的抗疼痛敏化之間可能的關聯性zh_TW
dc.title (題名) A possible correlation between the oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in ratsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FAO, Simpson RJ, Connolly LM, Chai SY (2001) Evidence That the Angiotensin IV (AT4) Receptor Is the Enzyme Insulin-regulated Aminopeptidase. J Biol Chem 276:48623-48626.
Ardaillou R, Chansel D (1997) Synthesis and effects of active fragments of angiotensin II. Kidney Int 52:1458-1468.
Bernier SG, Bellemare JML, Escher E, Guillemette G (1998) Characterization of AT4 Receptor from Bovine Aortic Endothelium with Photosensitive Analogues of Angiotensin IV†. Biochemistry 37:4280-4287.
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915-925.
Braszko JJ, Kulakowska A, Karwowska-Polecka W (1998) CGP 42112A ANTAGONISM OF THE ANGIOTENSIN II AND ANGIOTENSIN II(3-7) FACILITATION OF RECALL IN RATS. Pharmacological Research 38:461-468.
Bridges D, Thompson SWN, Rice ASC (2001) Mechanisms of neuropathic pain. Br J Anaesth 87:12-26.
Cechetto DF, Saper CB (1988) Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol 272:579-604.
Chuang H-h, Prescott ED, Kong H, Shields S, Jordt S-E, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957-962.
Condés-Lara M, Martínez-Lorenzana G, Rojas-Piloni G, Rodríguez-Jiménez J (2007) Branched oxytocinergic innervations from the paraventricular hypothalamic nuclei to superficial layers in the spinal cord. Brain Research 1160:20-29.
Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, López Hidalgo M, Freund-Mercier MJ (2006) Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Research 1081:126-137.
Cook AJ, Woolf CJ, Wall PD, McMahon SB (1987) Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 325:151-153.
Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15-27.
Fernando RN, Larm J, Albiston AL, Chai SY (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. The Journal of Comparative Neurology 487:372-390.
Fernando RN, Luff SE, Albiston AL, Chai SY (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. Journal of Neurochemistry 102:967-976.
Fletcher DM, Kayser VD, Guilbaud GM, DSc (1996) Influence of Timing of Administration on the Analgesic Effect of Bupivacaine Infiltration in Carrageenin-injected Rats. Anesthesiology 84:1129-1137.
Gold MS, Levine JD, Correa AM (1998) Modulation of TTX-R INa by PKC and PKA and Their Role in PGE2-Induced Sensitization of Rat Sensory Neurons In Vitro. J Neurosci 18:10345-10355.
Hallbeck M, Larhammar D, Blomqvist A (2001) Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J Comp Neurol 433:222-238.
Handa RK, Krebs LT, Harding JW, Handa SE (1998) Angiotensin IV AT4-receptor system in the rat kidney. Am J Physiol Renal Physiol 274:F290-299.
Harding JW, Wright JW, Swanson GN, Hanesworth JM, Krebs LT (1994) AT4 receptors: specificity and distribution. Kidney Int 46:1510-1512.
Hartmann B, Ahmadi S, Heppenstall PA, Lewin GR, Schott C, Borchardt T, Seeburg PH, Zeilhofer HU, Sprengel R, Kuner R (2004) The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain. Neuron 44:637-650.
Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR (1997) Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol Endocrinol Metab 272:E600-606.
Holmes C, Landry D, Granton J (2003) Science Review: Vasopressin and the cardiovascular system part 1 - receptor physiology. Critical Care 7:427 - 434.
Horio J, Nomura S, Okada M, Katsumata Y, Nakanishi Y, Kumano Y, Takami S, Kinoshita M, Tsujimoto M, Nakazato H, Mizutani S (1999) Structural Organization of the 5`-End and Chromosomal Assignment of Human Placental Leucine Aminopeptidase/Insulin-Regulated Membrane Aminopeptidase Gene. Biochemical and Biophysical Research Communications 262:269-274.
Hwang S-B, Lam M-H, Li C-L, Shen T-Y (1986) Release of platelet activating factor and its involvement in the first phase of carrageenin-induced rat foot edema. European Journal of Pharmacology 120:33-41.
Ji R-R, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in Neurosciences 26:696-705.
Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Critical reviews in oncology/hematology 53:35-69.
Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-210.
Keller SR (2004) Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull 27:761-764.
Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE (1995) Cloning and Characterization of a Novel Insulin-regulated Membrane Aminopeptidase from Glut4 Vesicles. J Biol Chem 270:23612-23618.
Krishnan R, Hanesworth JM, Wright JW, Harding JW (1999) Structure-binding studies of the adrenal AT4 receptor: analysis of position two- and three-modified angiotensin IV analogs. Peptides 20:915-920.
Lanckmans K, Sarre S, Smolders I, Michotte Y (2007) Use of a structural analogue versus a stable isotope labeled internal standard for the quantification of angiotensin IV in rat brain dialysates using nano-liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 21:1187-1195.
Laustsen PG, Rasmussen TE, Petersen K, Pedraza-Diaz S, Moestrup SK, Gliemann J, Sottrup-Jensen L, Kristensen T (1997) The complete amino acid sequence of human placental oxytocinase. Biochim Biophys Acta 1352:1-7.
Lee J, Albiston AL, Allen AM, Mendelsohn FAO, Ping SE, Barrett GL, Murphy M, Morris MJ, McDowall SG, Chai SY (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience 124:341-349.
Lew RA, Mustafa T, Ye S, McDowall SG, Chai SY, Albiston AL (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). Journal of Neurochemistry 86:344-350.
Lewin GR, Lu Y, Park TJ (2005) A plethora of painful molecules. Current Opinion in Neurobiology 15:129-129.
Lo TN, Saul WF, Lau SS (1987) Carrageenan-stimulated release of arachidonic acid and of lactate dehydrogenase from rat pleural cells. Biochemical Pharmacology 36:2405-2413.
Lundeberg T, Meister B, Björkstrand E, Uvnäs-Moberg K (1993) Oxytocin modulates the effects of galanin in carrageenan-induced hyperalgesia in rats. Brain Research 608:181-185.
Lundeberg T, Uvnäs-Moberg K, Ågren G, Bruzelius G (1994) Anti-nociceptive effects of oxytocin in rats and mice. Neuroscience Letters 170:153-157.
Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M (2001) Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. European Journal of Biochemistry 268:3259-3266.
Miller-Wing A, Hanesworth J, Sardinia M, Hall K, Wright J, Speth R, Grove K, Harding J (1993) Central angiotensin IV binding sites: distribution and specificity in guinea pig brain. J Pharmacol Exp Ther 266:1718-1726.
Miranda-Cardenas Y, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, López-Hidalgo M, Freund-Mercier MJ, Condés-Lara M (2006a) Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122:182-189.
Miranda-Cardenas Y, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jimenez J, Lopez-Hidalgo M, Freund-Mercier MJ, Condes-Lara M (2006b) Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122:182-189.
Moeller I, Chai SY, Oldfield BJ, McKinley MJ, Casley D, Mendelsohn FAO (1995) Localization of angiotensin IV binding sites to motor and sensory neurons in the sheep spinal cord and hindbrain. Brain Research 701:301-306.
Mustafa T, Joo Hyung Lee, Siew Yeen Chai, Albiston AL, McDowall SG, Mendelsohn FA (2001) Bioactive angiotensin peptides: focus on angiotensin IV. Journal of Renin-Angiotensin-Aldosterone System 2:205-210.
Nomura M, Tsukahara S, Ando H, Katsumata Y, Okada M, Itakura A, Nomura S, Kikkawa F, Nagasaka T, Mizutani S (2002) Differential Distribution of Placental Leucine Aminopeptidase/Oxytocinase and Aminopeptidase A in Human Trophoblasts of Normal Placenta and Complete Hydatidiform Mole. Placenta 23:631-639.
Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates / George Paxinos, Charles Watson. Amsterdam:: Elsevier.
Pederson ES, Harding JW, Wright JW (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regulatory Peptides 74:97-103.
Petersson M, Alster P, Lundeberg T, Uvnäs-Moberg K (1996) Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neuroscience Letters 212:87-90.
Petersson M, Wiberg U, Lundeberg T, Uvnäs-Moberg K (2001) Oxytocin decreases carrageenan induced inflammation in rats. Peptides 22:1479-1484.
Reeta K, Mediratta PK, Rathi N, Jain H, Chugh C, Sharma KK (2006) Role of kappa- and delta-opioid receptors in the antinociceptive effect of oxytocin in formalin-induced pain response in mice. Regul Pept 135:85-90.
Robertson JM, Harding S, Grupp LA (1993) Bradykinin suppresses alcohol intake and plays a role in the suppression produced by an ACE inhibitor. Pharmacol Biochem Behav 46:751-758.
Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y (1996) Human Placental Leucine Aminopeptidase/Oxytocinase. J Biol Chem 271:56-61.
Santos RAS, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1-7): an update. Regulatory Peptides 91:45-62.
Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Research 117:305-312.
Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260-272.
Simone DA, Sorkin LS, Oh U, Chung JM, Owens C, LaMotte RH, Willis WD (1991) Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol 66:228-246.
Sofroniew MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28:475-478.
Stragier B, De Bundel D, Sarre S, Smolders I, Vauquelin G, Dupont A, Michotte Y, Vanderheyden P (2008) Involvement of insulin-regulated aminopeptidase in the effects of the renin–angiotensin fragment angiotensin IV: a review. Heart Failure Reviews 13:321-337.
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A Human Homolog of Angiotensin-converting Enzyme. CLONING AND FUNCTIONAL EXPRESSION AS A CAPTOPRIL-INSENSITIVE CARBOXYPEPTIDASE. J Biol Chem 275:33238-33243.
Torebjörk HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. The Journal of Physiology 448:765-780.
Vanderheyden PML (2009) From angiotensin IV binding site to AT4 receptor. Molecular and Cellular Endocrinology 302:159-166.
Wallis MG, Lankford MF, Keller SR (2007) Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293:E1092-1102.
Wang JW, Lundeberg T, Yu LC (2003) Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of mu-opioid receptor. Regul Pept 115:153-159.
Woolf CJ, Salter MW (2000) Neuronal Plasticity: Increasing the Gain in Pain. Science 288:1765-1768.
Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regulatory Peptides 59:269-295.
Wright JW, Harding JW (1997) Important roles for angiotensin III and IV in the brain renin-angiotensin system. Brain Research Reviews 25:96-124.
Wright JW, Yamamoto BJ, Harding JW (2008) Angiotensin receptor subtype mediated physiologies and behaviors: New discoveries and clinical targets. Progress in Neurobiology 84:157-181.
Wright JW, Krebs LT, Stobb JW, Harding JW (1995) The Angiotensin IV System: Functional Implications. Frontiers in Neuroendocrinology 16:23-52.
Yamahara N, Nomura S, Suzuki T, Itakura A, Ito M, Okamoto T, Tsujimoto M, Nakazato H, Mizutani S (2000) Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sciences 66:1401-1410.
Yirmiya R, Ben-Eliyahu S, Shavit Y, Marek P, Liebeskind JC (1990) Stimulation of the hypothalamic paraventricular nucleus produces analgesia not mediated by vasopressin or endogenous opioids. Brain Research 537:169-174.
Yu S-Q, Lundeberg T, Yu L-C (2003) Involvement of oxytocin in spinal antinociception in rats with inflammation. Brain Research 983:13-22.
Zhang J-H, Stobb JW, Hanesworth JM, Sardinia MF, Harding JW (1998) Characterization and Purification of the Bovine Adrenal Angiotensin IV Receptor (AT4) Using [125I]Benzoylphenylalanine-Angiotensin IV as a Specific Photolabel. J Pharmacol Exp Ther 287:416-424.
Zhang J-H, Hanesworth JM, Sardinia MF, Alt JA, Wright JW, Harding JW (1999) Structural Analysis of Angiotensin IV Receptor (AT4) from Selected Bovine Tissues. J Pharmacol Exp Ther 289:1075-1083.
Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proceedings of the National Academy of Sciences of the United States of America 93:11968-11973.
zh_TW