學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 熱影像建製數值地表溫度模型之研究
Study on Using Thermal Image to Establish Digital Surface Temperature Model
作者 廖家翎
Liao, Chia Ling
貢獻者 黃灝雄
Huang, Hao Hsiung
廖家翎
Liao, Chia Ling
關鍵詞 熱影像
空中三角測量平差
正射熱影像
thermal image
aerial triangulation
ortho-rectified thermal image
日期 2013
上傳時間 5-Jan-2015 11:24:37 (UTC+8)
摘要 熱影像可獲取不同於可見光與近紅外光的溫度資訊,可運用於監測地表火山及斷層帶的溫度或災害防治上。以往於空載或衛載上的熱感測器解析度皆較低,判釋熱影像受到限制;如今,低成本、高機動性的無人飛行載具發展趨於成熟,可搭載熱感測器,並近空垂直拍攝近景熱影像,得到較高空間解析度之熱影像。
然而,熱影像上之地物內容與邊緣較一般可見光影像模糊,若要將熱影像應用於地理空間資訊系統上時,為使熱影像可與其他地面坐標資料結合,勢必需先幾何改正熱影像,並以相同區域之數值地表模型,正射化熱影像,同時三維展示熱影像與地表模型,提供研究者地形與熱分佈資訊;此外,對於火山地帶來說,高程資料也常是研究者判釋分析的重點資訊,此做法可看出區域之溫度分佈。
為正射糾正熱影像,利用共線式執行空中三角測量平差,本研究不僅率定熱像儀,求其內方外元素,更以空中三角測量平差,計算熱影像之外方位元素。此外,因熱影像紀錄地表輻射資訊,與可見光資訊大不相同,故熱影像經共線式空中三角測量平差後,建製之數值地表模型 (Digital Surface Model, DSM),並非該拍攝地區之真實地表起伏模型,因此本研究利用一既有的DSM,正射糾正空中三角測量後之熱影像,並以誤差向量圖表示正射糾正之成果。
Usually, thermal images contain abundant temperature information which can often be used to monitor the surface temperature or volcanic disaster prevention. Previously, thermal images acquired by satellite platform have low resolution. Today, low-cost, highly maneuverable unmanned aerial vehicle (UAV) can carry thermal sensors and obtain close-range thermal images with high spatial resolution.
Due to the distortion of thermal sensor, geometric correction should be applied to the thermal images. In this study, a UAV-borne thermal sensor has been calibrated, and used for taking thermal images. The exterior orientation elements of the thermal images have been determined by using aerial triangulation. A digital surface model generated by LiDAR was then used to ortho-rectify the thermal images. Gray values of the rectified thermal images were also normalized for generating a thermal mosaic. The resultant rectified thermal mosaic has excellent appearance for showing the temperature distribution and elevation simultaneously.
參考文獻 一、 中文參考文獻
林士淵,2002,「氣球載具航空攝影測量之研究」,國立政治大學地政學系碩士論文:台北。
何維信,2009,『測量學』,第六版,台北:宏泰出版社。
那至中,2010,「面陣列熱影像特性之研究」,國立政治大學地政學系碩士論文:台北。
周啟鳴、劉學軍,2006,『數字地形分析』第一版,北京:科學出版社,p52~57
周天穎、葉美伶、鍾若琪,2010,「UAV技術於緊急坡地災害資訊蒐集與模擬之應用」,〈第29屆測量及空間資訊研討會〉,國立台北大學:台北,民國99年9月2日至3日。
陳承昌、史天元、劉進金,2005,「不同時期SPOT影像之輻射改正」,〈第24屆測量學術及應用研討會〉,國立政治大學:台北,民國98年9月8日至9日。
陳玉鴛,2012,「多重疊近景影像匹配獲取房屋牆面紋理」,國立中央大學土木工程學系碩士論文:中壢。
黃隆明,2006,「幾何校正法應用於無人載具空拍影像從事災區調查分析」,『中華水土保持學報』,37(2):111-124。
潘國樑、胡興國,1985,『臺北市山坡地住宅區環境地質調查研究』,臺北:工研院能礦所。
簡榮興、王天佑、曹鼎志、辜炳寰、簡志凱,2010,「應用無人飛行載具UAV 技術進行土石災區之調查-以88 水災後之六龜鄉大智瀑布為例」,〈2010台灣土石工程研討會〉,高雄應用科技大學:高雄,民國99年10月21日至22日,p.947~956。
顏宏宇,2005,「LiDAR直接量測數值地形資料精度分析與應用」,國立成功大學地球科學研究所碩士論文:台南。
謝嘉聲,2006,「以雷達干涉技術偵測地表變形之研究」,國立交通大學土木工程研究所碩士論文:新竹。
謝幸宜,2011,「以自率光束法提升四旋翼UAV航拍影像之空三平差精度」,國立政治大學地政學系碩士論文:台北。


二、 外文參考文獻
Ackermann, F.E. 1994, On the Status and Accuracy Performance of GPS Photogrammetry, Proceedings of Mapping and Remote Sensing Tools for the 21st Century, Washington D.C., August 26-29, pp 80-90.
Baltsavias, E. P., “Airborne laser scanning: basic relations and formulas. “ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 199-214, 1999.
Baltsavias, E. P., “Airborne laser scanning: existing systems and firms and other resources. “ISPRS Journal of Photogrammetry and remote sensing, 54(2-3): 164-198, 1999.
Berni J.A.J., Zarco-Tejada P.J., L.Su´arez, Gonza´lez-Dugo V., Fereres E., 2009. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1-4-7/W5.
Eisenbeiss, H., 2009. UAV Photogrammetry. Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr.105, p. 235.
Fraser, C. S., 1997. Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing,Vol. 52, pp. 149-159.
Jacobson, Karsten, 1999. Stereoscopic mapping with thermal infrared images, Geoscience and Remote Sensing Symposium, 1999. IGARSS `99 Proceedings. IEEE 1999 International, Hamburg, Germany.
Lillesand, T. M., Kiefer R. W., Chipman J. W., 2004.“Remote Sensing and Image Interpretation”, fifth edition. John Wiley and Sons, Inc. New York.
LI Baipeng, YAN Qin, CHENG Chunquan, WEI Yanliang, 2008. The Accuracy Assessment Experimentof Aster 3D Ortho Product in Beijing Area, XXXVII ISPRS Congress, Beijing, China.
McGlone, J. C., E. M. Mikhail, J. S. Bethel, and R. Mullen, 2004, Manual of Photogrammetry, 5th Edition, Maryland: American Society for Photogrammetry and Remote Sensong.
Miraliakbari A., Hahn M., Engels J., 2010. Development of a Low-cost Sensor System for Use on Gerocopters, Canadian Geomatics Conference 2010 and ISPRS Com. I Symposium, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 1, 7 pages.
Pallister, J. S., Patterson, M. C. L., Mulligair, A., Douglas, J., Robinson, J.,2005. Volcano surveillance by ACR silver fox, Collection of Technical Papers - InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, Vol. I, Arlington, VA.
Smith, G. M. and Milton, E. J., 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sensing, 1999, vol. 20, no. 13, 2653-2662.
Thomas Luhmann, Julia Ohm, Johannes Piechel, Thorsten Roelfs, 2010.Geometric calibration of thermographic cameras, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5, Commission V Symposium, Newcastle upon Tyne, UK.
Thome, K. J., 2001. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sensing of Environment, 78:27-38.
Wilfried Hartmann, Sebastian Tilch, Henri Eisenbeiss, Konrad Schindler, 2012. Determination of the UAV position by automatic processing of thermal images, The XXII ISPRS, Melbouren, Australia.
Wolf, P. R., and B. A. Dewitt, 2000, Elements of Photogrammetry with Application in GIS, 3rd Edition, U.S.A.:McGRAW-HILL Book Co.

三、 網頁參考文獻
iWitness (2009). Frequently Asked Questions. Retrieved May 24, 2012 from iWitness on the World Wide Web: http://www.iwitnessphoto.com/iwitness/faqs.html
Photometrix (2010, August). Users Manual for iWitness and iWitnessPRO. Retrieved January 9, 2012 from World Wide Web: http://www.photometrix.com.au
描述 碩士
國立政治大學
地政研究所
100257027
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1002570271
資料類型 thesis
dc.contributor.advisor 黃灝雄zh_TW
dc.contributor.advisor Huang, Hao Hsiungen_US
dc.contributor.author (Authors) 廖家翎zh_TW
dc.contributor.author (Authors) Liao, Chia Lingen_US
dc.creator (作者) 廖家翎zh_TW
dc.creator (作者) Liao, Chia Lingen_US
dc.date (日期) 2013en_US
dc.date.accessioned 5-Jan-2015 11:24:37 (UTC+8)-
dc.date.available 5-Jan-2015 11:24:37 (UTC+8)-
dc.date.issued (上傳時間) 5-Jan-2015 11:24:37 (UTC+8)-
dc.identifier (Other Identifiers) G1002570271en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/72571-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政研究所zh_TW
dc.description (描述) 100257027zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 熱影像可獲取不同於可見光與近紅外光的溫度資訊,可運用於監測地表火山及斷層帶的溫度或災害防治上。以往於空載或衛載上的熱感測器解析度皆較低,判釋熱影像受到限制;如今,低成本、高機動性的無人飛行載具發展趨於成熟,可搭載熱感測器,並近空垂直拍攝近景熱影像,得到較高空間解析度之熱影像。
然而,熱影像上之地物內容與邊緣較一般可見光影像模糊,若要將熱影像應用於地理空間資訊系統上時,為使熱影像可與其他地面坐標資料結合,勢必需先幾何改正熱影像,並以相同區域之數值地表模型,正射化熱影像,同時三維展示熱影像與地表模型,提供研究者地形與熱分佈資訊;此外,對於火山地帶來說,高程資料也常是研究者判釋分析的重點資訊,此做法可看出區域之溫度分佈。
為正射糾正熱影像,利用共線式執行空中三角測量平差,本研究不僅率定熱像儀,求其內方外元素,更以空中三角測量平差,計算熱影像之外方位元素。此外,因熱影像紀錄地表輻射資訊,與可見光資訊大不相同,故熱影像經共線式空中三角測量平差後,建製之數值地表模型 (Digital Surface Model, DSM),並非該拍攝地區之真實地表起伏模型,因此本研究利用一既有的DSM,正射糾正空中三角測量後之熱影像,並以誤差向量圖表示正射糾正之成果。
zh_TW
dc.description.abstract (摘要) Usually, thermal images contain abundant temperature information which can often be used to monitor the surface temperature or volcanic disaster prevention. Previously, thermal images acquired by satellite platform have low resolution. Today, low-cost, highly maneuverable unmanned aerial vehicle (UAV) can carry thermal sensors and obtain close-range thermal images with high spatial resolution.
Due to the distortion of thermal sensor, geometric correction should be applied to the thermal images. In this study, a UAV-borne thermal sensor has been calibrated, and used for taking thermal images. The exterior orientation elements of the thermal images have been determined by using aerial triangulation. A digital surface model generated by LiDAR was then used to ortho-rectify the thermal images. Gray values of the rectified thermal images were also normalized for generating a thermal mosaic. The resultant rectified thermal mosaic has excellent appearance for showing the temperature distribution and elevation simultaneously.
en_US
dc.description.tableofcontents 摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 3
一、 研究動機 3
二、 研究目的 4
第三節 研究方法與流程 5
一、 研究方法 5
二、 研究流程 7
第四節 論文架構 8
第二章 理論基礎與文獻回顧 9
第一節 熱紅外遙感探測 11
第二節 率定熱影像 13
第三節 無人飛行載具 17
第四節 數值地表模型獲取方法 22
第五節 小結 26
第三章 實驗設計 27
第一節 實驗規劃 27
第二節 資料取得 31
第三節 控制點佈設 35
第四節 成果檢核 37
第四章 研究成果與分析 38
第一節 熱像儀率定成果 38
第三節 熱影像近空拍攝成果 44
第四節 熱影像相對溫度標準化 54
第五節 熱影像成果與分析 58
第六節 溫度標準化成果 64
第七節 建置數值地表溫度模型 67
第五章 結論與建議 69
第六章 參考文獻 72
一、 中文參考文獻 72
二、 外文參考文獻 72
三、 網頁參考文獻 74
附錄 75
zh_TW
dc.format.extent 3633054 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1002570271en_US
dc.subject (關鍵詞) 熱影像zh_TW
dc.subject (關鍵詞) 空中三角測量平差zh_TW
dc.subject (關鍵詞) 正射熱影像zh_TW
dc.subject (關鍵詞) thermal imageen_US
dc.subject (關鍵詞) aerial triangulationen_US
dc.subject (關鍵詞) ortho-rectified thermal imageen_US
dc.title (題名) 熱影像建製數值地表溫度模型之研究zh_TW
dc.title (題名) Study on Using Thermal Image to Establish Digital Surface Temperature Modelen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 一、 中文參考文獻
林士淵,2002,「氣球載具航空攝影測量之研究」,國立政治大學地政學系碩士論文:台北。
何維信,2009,『測量學』,第六版,台北:宏泰出版社。
那至中,2010,「面陣列熱影像特性之研究」,國立政治大學地政學系碩士論文:台北。
周啟鳴、劉學軍,2006,『數字地形分析』第一版,北京:科學出版社,p52~57
周天穎、葉美伶、鍾若琪,2010,「UAV技術於緊急坡地災害資訊蒐集與模擬之應用」,〈第29屆測量及空間資訊研討會〉,國立台北大學:台北,民國99年9月2日至3日。
陳承昌、史天元、劉進金,2005,「不同時期SPOT影像之輻射改正」,〈第24屆測量學術及應用研討會〉,國立政治大學:台北,民國98年9月8日至9日。
陳玉鴛,2012,「多重疊近景影像匹配獲取房屋牆面紋理」,國立中央大學土木工程學系碩士論文:中壢。
黃隆明,2006,「幾何校正法應用於無人載具空拍影像從事災區調查分析」,『中華水土保持學報』,37(2):111-124。
潘國樑、胡興國,1985,『臺北市山坡地住宅區環境地質調查研究』,臺北:工研院能礦所。
簡榮興、王天佑、曹鼎志、辜炳寰、簡志凱,2010,「應用無人飛行載具UAV 技術進行土石災區之調查-以88 水災後之六龜鄉大智瀑布為例」,〈2010台灣土石工程研討會〉,高雄應用科技大學:高雄,民國99年10月21日至22日,p.947~956。
顏宏宇,2005,「LiDAR直接量測數值地形資料精度分析與應用」,國立成功大學地球科學研究所碩士論文:台南。
謝嘉聲,2006,「以雷達干涉技術偵測地表變形之研究」,國立交通大學土木工程研究所碩士論文:新竹。
謝幸宜,2011,「以自率光束法提升四旋翼UAV航拍影像之空三平差精度」,國立政治大學地政學系碩士論文:台北。


二、 外文參考文獻
Ackermann, F.E. 1994, On the Status and Accuracy Performance of GPS Photogrammetry, Proceedings of Mapping and Remote Sensing Tools for the 21st Century, Washington D.C., August 26-29, pp 80-90.
Baltsavias, E. P., “Airborne laser scanning: basic relations and formulas. “ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 199-214, 1999.
Baltsavias, E. P., “Airborne laser scanning: existing systems and firms and other resources. “ISPRS Journal of Photogrammetry and remote sensing, 54(2-3): 164-198, 1999.
Berni J.A.J., Zarco-Tejada P.J., L.Su´arez, Gonza´lez-Dugo V., Fereres E., 2009. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1-4-7/W5.
Eisenbeiss, H., 2009. UAV Photogrammetry. Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr.105, p. 235.
Fraser, C. S., 1997. Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing,Vol. 52, pp. 149-159.
Jacobson, Karsten, 1999. Stereoscopic mapping with thermal infrared images, Geoscience and Remote Sensing Symposium, 1999. IGARSS `99 Proceedings. IEEE 1999 International, Hamburg, Germany.
Lillesand, T. M., Kiefer R. W., Chipman J. W., 2004.“Remote Sensing and Image Interpretation”, fifth edition. John Wiley and Sons, Inc. New York.
LI Baipeng, YAN Qin, CHENG Chunquan, WEI Yanliang, 2008. The Accuracy Assessment Experimentof Aster 3D Ortho Product in Beijing Area, XXXVII ISPRS Congress, Beijing, China.
McGlone, J. C., E. M. Mikhail, J. S. Bethel, and R. Mullen, 2004, Manual of Photogrammetry, 5th Edition, Maryland: American Society for Photogrammetry and Remote Sensong.
Miraliakbari A., Hahn M., Engels J., 2010. Development of a Low-cost Sensor System for Use on Gerocopters, Canadian Geomatics Conference 2010 and ISPRS Com. I Symposium, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 1, 7 pages.
Pallister, J. S., Patterson, M. C. L., Mulligair, A., Douglas, J., Robinson, J.,2005. Volcano surveillance by ACR silver fox, Collection of Technical Papers - InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, Vol. I, Arlington, VA.
Smith, G. M. and Milton, E. J., 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sensing, 1999, vol. 20, no. 13, 2653-2662.
Thomas Luhmann, Julia Ohm, Johannes Piechel, Thorsten Roelfs, 2010.Geometric calibration of thermographic cameras, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5, Commission V Symposium, Newcastle upon Tyne, UK.
Thome, K. J., 2001. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sensing of Environment, 78:27-38.
Wilfried Hartmann, Sebastian Tilch, Henri Eisenbeiss, Konrad Schindler, 2012. Determination of the UAV position by automatic processing of thermal images, The XXII ISPRS, Melbouren, Australia.
Wolf, P. R., and B. A. Dewitt, 2000, Elements of Photogrammetry with Application in GIS, 3rd Edition, U.S.A.:McGRAW-HILL Book Co.

三、 網頁參考文獻
iWitness (2009). Frequently Asked Questions. Retrieved May 24, 2012 from iWitness on the World Wide Web: http://www.iwitnessphoto.com/iwitness/faqs.html
Photometrix (2010, August). Users Manual for iWitness and iWitnessPRO. Retrieved January 9, 2012 from World Wide Web: http://www.photometrix.com.au
zh_TW