Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/32638
DC FieldValueLanguage
dc.contributor.advisor沈錳坤zh_TW
dc.contributor.advisorShan, Man-Kwanen_US
dc.contributor.author廖忠訓zh_TW
dc.contributor.authorLiao, Zhung-Xunen_US
dc.creator廖忠訓zh_TW
dc.creatorLiao, Zhung-Xunen_US
dc.date2004en_US
dc.date.accessioned2009-09-17T05:54:33Z-
dc.date.available2009-09-17T05:54:33Z-
dc.date.issued2009-09-17T05:54:33Z-
dc.identifierG0091753013en_US
dc.identifier.urihttps://nccur.lib.nccu.edu.tw/handle/140.119/32638-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學學系zh_TW
dc.description91753013zh_TW
dc.description93zh_TW
dc.description.abstract過去對於探勘常見項目集的研究僅限於找出資料庫中交易紀錄的子集合,在這篇論文中,我們提出一個新的探勘主題:常見超集合探勘。常見超集合意指它包含資料庫中各筆紀錄的筆數多於最小門檻值,而原本用來探勘常見子集合的演算法並無法直接套用,因此我們以補集合的角度,提出了三個快速的演算法來解決這個新的問題。首先為Apriori-C:此為使用先廣後深搜尋的演算法,並且以掃描資料庫的方式來決定具有相同長度之候選超集合的支持度,第二個方法是Eclat-C:此為採用先深後廣搜尋的演算法,並且搭配交集法來計算倏選超集合的支持度,最後是DCT:此方法可利用過去常見子集合探勘的演算法來進行探勘,如此可以省下開發新系統的成本。\n 常見超集合的探勘可以應用在電子化的遠距學習系統,生物資訊及工作排程的問題上。尤其在線上學習系統,我們可以利用常見超集合來代表一群學生的學習行為,並且藉以預測學生的學習成就,使得老師可以及時發現學生的學習迷失等行為;此外,透過常見超集合的探勘,我們也可以為學生推薦個人化的課程,以達到因材施教的教學目標。\n 在實驗的部份,我們比較了各演算法的效率,並且分別改變實驗資料庫的下列四種變因:1) 交易資料的筆數、2) 每筆交易資料的平均長度、3) 資料庫中項目的總數和4) 最小門檻值。在最後的分析當中,可以清楚地看出我們提出的各種方法皆十分有效率並且具有可延伸性。zh_TW
dc.description.abstractThe algorithms for the discovery of frequent itemset have been investigated widely. These frequent itemsets are subsets of database. In this thesis, we propose a novel mining task: mining frequent superset from the database of itemsets that is useful in bioinformatics, E-learning systems, jobshop scheduling, and so on. A frequent superset means that the number of transactions contained in it is not less than minimum support threshold. Intuitively, according to the Apriori algorithm, the level-wise discovering starts from 1-itemset, 2-itemset, and so forth. However, such steps cannot utilize the property of Apriori to reduce search space, because if an itemset is not frequent, its superset maybe frequent. In order to solve this problem, we propose three methods. The first is the Apriori-based approach, called Apriori-C. The second is the Eclat-based approach, called Eclat-C, which is a depth-first approach. The last is the proposed data complement technique (DCT) that we utilize original frequent itemset mining approach to discover frequent superset.\n The experimental studies compare the performance of the proposed three methods by considering the effect of the number of transactions, the average length of transactions, the number of different items, and minimum support. The analysis shows that the proposed algorithms are time efficient and scalable.en_US
dc.description.tableofcontentsABSTRACT IN CHINESE...........................................i\nABSTRACT.....................................................ii\nACKNOWLEDGEMENTS............................................iii\nTABLE OF CONTENTS............................................iv\nLIST OF TABLES...............................................vi\nLIST OF FIGURES............................................viii\nCHAPTER 1 Introduction........................................1\nCHAPTER 2 Review of Frequent Itemset Mining...................5\n 2.1 Overview..........................................5\n 2.2 Algorithm Apriori.................................7\n 2.3 Algorithm Eclat..................................11\n 2.4 Algorithm FP-Growth..............................14\n 2.5 Summary..........................................18\nCHAPTER 3 Discovery of Frequent Superset.....................20\n 3.1 Introduction.....................................20\n 3.2 Baseline Method..................................21\n 3.3 Algorithm Apriori-C..............................25\n 3.4 Algorithm Eclat-C................................31\n 3.5 Algorithm DCT....................................33\n 3.6 Summary..........................................36\nCHAPTER 4 Experiment Results.................................37\n 4.1 Introduction.....................................37\n 4.2 Synthetic Data Generation........................38\n 4.3 Performance Analysis.............................39\n 4.3.1 Minimum Support............................39\n 4.3.2 Number of Transaction......................42\n 4.3.3 Number of Items............................45\n 4.3.4 Average Size of Transactions...............52\n 4.3.5 Number of Candidates.......................55\nCHAPTER 5 Applications.......................................57\n 5.1 Introduction.....................................57\n 5.2 Online Learning..................................58\nCHAPTER 6 Conclusions........................................63\n 6.1 Summary..........................................63\n 6.2 Future Work......................................64\nREFERENCE....................................................66\nPUBLICATION LIST.............................................71zh_TW
dc.format.extent76765 bytes-
dc.format.extent103643 bytes-
dc.format.extent118211 bytes-
dc.format.extent44143 bytes-
dc.format.extent44573 bytes-
dc.format.extent46159 bytes-
dc.format.extent59481 bytes-
dc.format.extent207381 bytes-
dc.format.extent166505 bytes-
dc.format.extent113553 bytes-
dc.format.extent66543 bytes-
dc.format.extent47989 bytes-
dc.format.extent51668 bytes-
dc.format.extent43658 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.language.isoen_US-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0091753013en_US
dc.subject常見超集合探勘zh_TW
dc.subject常見樣式探勘zh_TW
dc.subject關聯法則zh_TW
dc.subject資料探勘zh_TW
dc.subjectFrequent Superset Miningen_US
dc.subjectFrequent Pattern Miningen_US
dc.subjectAssociation Ruleen_US
dc.subjectData Miningen_US
dc.title高效率常見超集合探勘演算法之研究zh_TW
dc.titleEfficient Algorithms for the Discovery of Frequent Superseten_US
dc.typethesisen
dc.relation.reference[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” Proc. of ACM Special Interest Group on Management of Data, ACM SIGMOD’93, 1993.zh_TW
dc.relation.reference[2] R. Agrawal and R. Srikant, ”Fast Algorithms for Mining Association Rules,” Proc. of the 20th International Conference on Very Large Data Bases, VLDB’94, 1994.zh_TW
dc.relation.reference[3] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” Proc. of ACM Special Interest Group on Management of Data, ACM SIGMOD’00, 2000.zh_TW
dc.relation.reference[4] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New Algorithms for Fast Discovery of Association Rules,” Proc. of the 3rd ACM Special Interest Group on Knowledge Discovery in Data and Data Mining, ACM SIGKDD’97, 1997.zh_TW
dc.relation.reference[5] R. Agarwal, C. Aggarwal, and V. Prasad, “A Tree Projection Algorithm for Generation of Frequent Itemsets,” Journal on Parallel and Distributed Computing (Special Issue on High Performance Data Mining), Vol. 61, Issue 3, 2000.zh_TW
dc.relation.reference[6] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Database,” Proc. of the 1st IEEE International Conference on Data Mining, ICDM’01, 2001.zh_TW
dc.relation.reference[7] J. Park, M. Chen, and P. Yu, “An Effective Hash-Based Algorithm for Mining Association Rules,” Proc. of ACM Special Interest Group on Management of Data, ACM SIGMOD’95, 1995.zh_TW
dc.relation.reference[8] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,” Morgan Kaufman Publishers, 2000.zh_TW
dc.relation.reference[9] J. Hipp, U. Guntzer, and G. Nakhaeizadeh, “Algorithms for Association Rule Mining – A General Survey and Comparison,” ACM SIGKDD Explorations, Vol. 2, Issue 1, 2000.zh_TW
dc.relation.reference[10] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A Maximum Frequent Itemset Algorithm for Transactional Databases,” Proc. of the 17th International Conference on Data Engineering, ICDE’01, 2001.zh_TW
dc.relation.reference[11] R. Agarwal, C. Aggarwal, and V. Prasad, “Depth First Generation of Long Patterns,” Proc. of ACM Special Interest Group on Knowledge Discovery in Data and Data Mining, ACM SIGKDD’00, 2000.zh_TW
dc.relation.reference[12] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen, “A Perspective on Databases and Data Mining,” Proc. of the 1st International Conference on Knowledge Discovery and Data Mining, KDD’95, 1995.zh_TW
dc.relation.reference[13] G. Gardarin, P. Pucheral, and F. Wu, “Bitmap Based Algorithm for Mining Association Rules,” Proc. of Actes des journes Bases de Donnes Avances, 1998.zh_TW
dc.relation.reference[14] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association Rules in Large Databases,” Proc. of the 21st International Conference on Very Large Data Bases, VLDB’95, 1995.zh_TW
dc.relation.reference[15] F. Bodon, “A Fast APRIORI Implementation,” Proc. of the 3rd IEEE International Conference on Data Mining, ICDM’03, Workshop on Frequent Itemset Mining Implementions, FIMI’03, 2003.zh_TW
dc.relation.reference[16] Synthetic Data Generation Code for Associations and Sequential Patterns. http://www. almaden.ibm.com/software/quest/Resources/index.shtml Intelligent Information System, IBM Almaden Research Center.zh_TW
dc.relation.reference[17] T. Urdan and C. Weggen, “Corporate E-learning: Exploring a New Frontier,” WR Hambrecht + Co, 2000.zh_TW
dc.relation.reference[18] R. Beasley and M. Waugh, “The Effects of Content-Structure Focusing on Learner Structural Knowledge Acquisition, Retention, and Disorientation in a Hypermedia Environment,” Journal of Research on Computing in Education, Vol. 28, Issue 3, 1996.zh_TW
dc.relation.reference[19] R. Beasley and M. Waugh, “Cognitive Mapping Architectures and Hypermedia Disorientation: An Empirical Study,” Journal of Educational Multimedia and Hypermedia, Vol. 4, Issue 2-3, 1995.zh_TW
dc.relation.reference[20] C. Chang, “Cognitive Problem and Suggestions in Information Space Navigation–An Introduction and Survey,” Hua Fan Annual Journal, Vol. 4, No. 1, 1997.zh_TW
dc.relation.reference[21] G. Chen, C. Liu, K. Ou, and M. Lin, “Web Learning Portfolios: A Tool for Supporting Performance Awareness,” Innovations in Education and Training International, IETI, Vol. 38, Issue 1, 2000.zh_TW
dc.relation.reference[22] C. Liu, G. Chen, K. Ou, B. Liu, and J. Horng, \"Managing Activity Dynamics of Web Based Collaborative Applications,\" International Journal of Artificial Intelligence Tools, JAIT, Vol. 8, Issue 2, 1999.zh_TW
dc.relation.reference[23] D. Wang, Y. Bao, G. Yu, and G. Wang, “Using Page Classification and Association Rule mining for Personalized recommendation in distance learning,” Proc. of the 1st International Conference on Web-based learning, ICWL’02, 2002.zh_TW
dc.relation.reference[24] D. Chiu, Y. Wu, and A. Chen, “An Efficient Algorithm for Mining Frequent Sequences by New Strategy without Support Counting,” Proc. of the 20th International Conference on Data Engineering, ICDE’03, 2003.zh_TW
dc.relation.reference[25] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. of the 12th International Conference on Data Engineering, ICDE’95, 1995.zh_TW
dc.relation.reference[26] J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, PWS Publishing Company, 1997.zh_TW
dc.relation.reference[27] F. Gandon, “Ontology Engineering: a Survey and a Return on Experience,” Research Report of INRIA, RR4396, 2002.zh_TW
dc.relation.reference[28] N. Noy and M. Musen, “SMART: Automated Support for Ontology Merging and Alignment,” Proc. of the 12th Banff Workshop on Knowledge Acquisition, Modeling, and Management, KAW’99, 1999.zh_TW
dc.relation.reference[29] N. Noy and M. Musen, “PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment,” Proc. of the 7th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence, AAAI’00, 2000.zh_TW
dc.relation.reference[30] G. Stumme and A. Maedche, “FCA-MERGE: Bottom-Up Merging of Ontologies,” Proc. of the 17th Internation Joint Conference on Artificial Intelligence, IJCAI’01, 2001.zh_TW
dc.relation.reference[31] S. Itoga, “The String Merging Problem,” BIT, Vol. 21, No. 1, 1981.zh_TW
item.grantfulltextopen-
item.openairetypethesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
75301301.pdf74.97 kBAdobe PDF2View/Open
75301302.pdf101.21 kBAdobe PDF2View/Open
75301303.pdf115.44 kBAdobe PDF2View/Open
75301304.pdf43.11 kBAdobe PDF2View/Open
75301305.pdf43.53 kBAdobe PDF2View/Open
75301306.pdf45.08 kBAdobe PDF2View/Open
75301307.pdf58.09 kBAdobe PDF2View/Open
75301308.pdf202.52 kBAdobe PDF2View/Open
75301309.pdf162.6 kBAdobe PDF2View/Open
75301310.pdf110.89 kBAdobe PDF2View/Open
75301311.pdf64.98 kBAdobe PDF2View/Open
75301312.pdf46.86 kBAdobe PDF2View/Open
75301313.pdf50.46 kBAdobe PDF2View/Open
75301314.pdf42.63 kBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.